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Abstract

The vertical redistribution of the geostrophic momentum by the residual effects of
pressure perturbations (called the layer-thickness form drag) is investigated using
thickness-weighted temporal-averaged mean primitive equations for a continuously
stratified fluid in an adiabatic formulation. A four-box energy diagram, in which the5

mean and eddy kinetic energies are defined by the thickness-weighted mean velocity
and the deviation from it, respectively, shows that the layer-thickness form drag reduces
the mean kinetic energy and endows the eddy field with an energy cascade. The en-
ergy equations are derived using an identity (called the “pile-up rule”) between cumu-
lative sums of the Eulerian mean quantity and the thickness-weighted mean quantity in10

each vertical column. The pile-up rule shows that the thickness-weighted mean veloc-
ity satisfies a no-normal-flow boundary condition at the top and bottom of the ocean,
which enables the volume budget of pressure flux divergence in the energy diagram
to be determined. With the pile-up rule, the total kinetic energy based on the Eulerian
mean can be rewritten in a thickness-weighted form. The four-box energy diagram15

in the present study should be consistent with energy diagrams of layer models, the
temporal-residual-mean theory, and Iwasaki’s atmospheric theory. Under certain as-
sumptions, the work of the layer-thickness form drag in the global ocean circulation is
suggested to be comparable to the work done by the wind forcing.

1 Introduction20

In contrast to isotropic three-dimensional turbulence, perturbations in a stratified fluid
can induce anisotropic mixing of momentum. The isopycnal (lateral) mixing by the
Reynolds stress has been well investigated, whereas there have been few investiga-
tions into the diapycnal (vertical) transfer of momentum being possible by the residual
effects of pressure perturbation (called the layer-thickness form drag in this paper, as25

detailed in Sect. 2.1). Although the layer-thickness form drag has been unpopular in
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modern numerical applications of the ocean and atmosphere, the four-box energy di-
agram shows that the form drag is essential in the connection between the mean and
perturbation fields in an adiabatic formulation of an inviscid hydrostatic fluid.

The four-box energy diagram of ocean and atmosphere dynamics consists of the
potential and kinetic energies associated with the mean and perturbation fields. The5

classical Lorenz (1955) diagram has often been used in the theoretical development of
subgrid-scale parameterization in numerical simulations and in the analysis of various
types of data (Böning and Budich, 1992; Holton, 1992). However, the energy diagram
and associated energy cycle may vary with the definitions of the mean and perturbation
fields. An energy diagram for the transformed Eulerian mean (TEM) theory (Andrews10

and McIntyre, 1976) is given by Plumb (1983) and Kanzawa (1984), whereas an energy
diagram for the generalized Lagrangian mean (GLM) theory (Andrews and McIntyre,
1978) has received little attention in past oceanic studies. Focusing on the adiabatic
aspects of waves and eddies in a stratified fluid, Iwasaki (2001) derived a new energy
diagram from a one-dimensional (vertical direction) analog of the GLM. He showed15

that the layer-thickness form drag allows direct transfer between the mean kinetic and
eddy potential energies, which replaces the route involving the eddy kinetic energy in
the TEM theory. Moreover, Iwasaki’s formulation does not use the geostrophic balance
in closing the energy diagram, which is in sharp contrast to the situation with the TEM
theory. This allows Iwasaki’s energy diagram to be applied various types of (rotational20

and nonrotational) stratified fluids. The result of Iwasaki (2001) follows that of Bleck
(1985), who showed that the mean and eddy kinetic energies can be positive-definite
quantities in isentropic coordinates.

The present study investigated the characteristics of Iwasaki’s energy diagram in
order to clarify the role of layer-thickness form drag in the connection between the25

mean and perturbation fields, with the aim of understanding the effects of introducing
layer-thickness form drag in coarse-resolution ocean models (cf. Greatbatch, 1998),
as part of parameterization of unresolved geostrophic eddies in baroclinic instability
(Charney, 1947; Eady, 1949). In order to elucidate the components required in the new
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energy diagram, this paper does not use the semi-Lagrangian coordinates of Andrews
and McIntyre (1978), Iwasaki (2001), and Jacobson and Aiki (2006). The present
derivation begins with the inviscid incompressible hydrostatic Boussinesq equations,
which are adiabatically low-pass filtered so as to avoid unphysical mixing across den-
sity surfaces. These equations are essentially the thickness-weighted-mean equations5

(for tracers, density, and momentum) in density-coordinates (de Szoeke and Bennett,
1993), as explained in Sect. 2. We focus on an integral identity to explain the boundary
condition (Sect. 2.2). In Sect. 3, we present an energy diagram for the above adiabat-
ically low-pass filtered equations which is largely consistent with the work of Iwasaki
(2001). Under certain assumptions on form-drag parameterization, the work associ-10

ated with the eddy form drag in the global ocean circulation is estimated in Sect. 4.
The paper concludes with a summary in Sect. 5. The present study excluded diabatic
processes (density mixing) in the surface mixed layer and the bottom boundary layer of
the ocean (cf. Kuo et al., 2005; Plumb and Ferrari, 2005), since we are concerned with
the adiabatic process (mesoscale eddies) and the boundary condition of the present15

formulation is clear, in contrast to the TEM theory (see Sects. 2.2 and 3.5).

2 Adiabatic mean formulation

Section 2.1 summarizes the thickness-weighted temporal-mean momentum and den-
sity equations that have been investigated by de Szoeke and Bennett (1993), Mc-
Dougall and McIntosh (2001), and Jacobson and Aiki (2006). Readers not familiar20

with expressions in z-coordinates are first referred to Bleck (1985) for the primitive
equations (and energy equations) in density-coordinates. In Sect. 2.2, we introduce an
integral identity to explain the boundary condition.
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2.1 Primitive equations

The parameterization of mesoscale eddy transports with an additional advection rep-
resented a major advance in ocean modeling, that allowed coarse-resolution models
to maintain deep water formation in the polar regions and overturning circulation in
the world’s oceans (Danabasoglu and McWilliams, 1994; Gent et al., 1995; Treguier et5

al., 1997; Killworth, 1997). These theories are based on the thickness-weighted-mean
formulation of a passive tracer equation in density-coordinates (note that “averaging”
refers to a temporal low-pass filter in this paper). De Szoeke and Bennett (1993)
pointed out in their Appendix A that the mean quantities in density-coordinates can
be mapped back onto z-coordinates (i.e., Cartesian coordinates). That is, a thickness-10

weighted-mean ((∂z/∂ρ)S)
ρ
/(∂z/∂ρ)

ρ
is taken in density-coordinates (where S is an

arbitrary quantity and ρ is density), which is then mapped back into z-coordinates that
now refer to the mean vertical position of each isopycnal surface. This backmapped
quantity, now a function of z, is here given the symbol Ŝ (Table 1 describes the symbols
used in this paper). A passive tracer equation such as ∂S/∂t+U·∇S=0 in z-coordinates15

becomes, after one application of this process, ∂Ŝ/∂t+Û·∇Ŝ=M[S], where Û is the
thickness-weighted three-dimensional velocity in mean z-coordinates and M[] is the
isopycnal mixing (cf. Griffies, 2004). The weighted three-dimensional velocity is nondi-
vergent (∇·Û=0) if the unweighted three-dimensional velocity is nondivergent (∇·U=0).

In the special case where the density equation is, M[ρ]=0, diffusion is20

not present. In density-coordinates, the thickness-weighted mean density is

((∂z/∂ρ)ρ)
ρ
/(∂z/∂ρ)

ρ
=ρ

ρ
=ρ. As a result, it is useful to introduce S̃ for an isopycnal

mean (but not thickness-weighted) quantity S
ρ

that is backmapped onto z-coordinates
at the mean vertical position of each density surface (Table 1). The modified density
equation (de Szoeke and Bennett, 1993) in z-coordinates becomes25

∂
∂t

ρ̃ + Û · ∇ρ̃ = 0. (1)
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Here we call ρ̃ the mean height (MH) density: this is the same as the temporal-residual-
mean (TRM) density in McDougall and McIntosh (2001) and Jacobson and Aiki (2006),
and is given by the density of the surface whose mean vertical position is z; it is slightly
different from the Eulerian mean density ρ (see Fig. 1). In most ocean general circula-
tion models (OGCMs), the thickness-weighted velocity Û to advect tracers is calculated5

by summing the prognostic velocity in the model and a parameterized extra transport
velocity (detailed in Sect. 3.3), because in the prevailing mean formulations the momen-
tum equations are simply averaged either by the isopycnal mean (Gent et al., 1995) or
the Eulerian mean (McDougall and McIntosh, 1996) to avoid modifying the form of the
pressure term.10

However, an interesting feature appears when the momentum equations are also
thickness weighted: the hydrostatic pressure gradients −∇H

∫
z gρ dz(≡G) yield a

secondary term G
B (i.e., the layer-thickness form drag, eddy form drag, or invis-

cid pressure drag) in addition to the term available to the model −∇H
∫
z gρ̃ dz(≡G̃),

where ∇H=
(
∂/∂x, ∂/∂y

)
. Table 1 provides a detailed expression of GB(≡Ĝ−G̃). The15

thickness-weighted mean momentum equation is

∂
∂t

V̂ + Û · ∇V̂ + fz × V̂ = G̃/ρ0 +GB/ρ0 +M[V ], (2)

where V̂ =(û, v̂) and f is the Coriolis parameter of the earth. The Reynolds stress
M[V ] is less focused on in the present paper, and the total transport velocity Û has no
component normal to solid boundaries (McDougall and McIntosh, 2001; see Sect. 2.220

for details).
Equations (1) and (2) first appeared in de Szoeke and Bennett (1993) in an adiabatic

and macroscopic context, and were further investigated in later studies. McDougall
and McIntosh (2001) introduced a Taylor expansion for the vertical displacement of
density surfaces relative to z-coordinates. To present exact equations for the mean and25

perturbation fields, Jacobson and Aiki (2006) used a height-density semi-Lagrangian
coordinate that is analogous to the pressure-isentrope semi-Lagrangian coordinate of
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Iwasaki (2001). Equations (1) and (2) are now well justified, being free from expansion
parameters and the explicit use of density-coordinates, which are improvements over
McDougall and McIntosh (2001) and de Szoeke and Bennett (1993), respectively. Most
importantly, velocity Û is a prognostic quantity in a model stepping forward Eqs. (1) and
(2), and this suggests the applicability of a momentum approach in which the pressure5

drag G
B rather than the eddy-induced advection is parameterized (Greatbatch, 1998;

Ferreira et al., 2005).

2.2 Boundary condition

We consider an oceanic domain bounded by a rigid sea surface and a bottom with
arbitrary topography. To show that the total transport velocity Û has no component10

normal to the boundaries, we here introduce an identity for the vertical integrals of
Eulerian mean and thickness-weighted mean quantities:∫ 0

−h
S dz =

∫ 0

−h
S dz =

∫ ρtop

ρbtm

(
S
∂z
∂ρ

)
dρ =

∫ ρ̃top

ρ̃btm

(
S
∂z
∂ρ

)ρ

dρ̃ =
∫ 0

−h

(
S ∂z

∂ρ

)ρ
∂z/∂ρ̃

dz =
∫ 0

−h
Ŝ dz, (3)

where h(>0) is the bottom depth. This identity, which applies to any quantity S, is a15

generalization of the results of McDougall and McIntosh (2001) and Killworth (2001),
and is here called the “pile-up rule” since it explains the relations between the cumu-
lative sums of weighted differentials in the vertical direction. An obvious interpretation
of the pile-up rule is that, with T denoting the range of time averaging, both T

∫0
−h S dz

and T
∫0
−h Ŝ dz refer to a net amount

∫t+T/2

t−T/2

∫0
−h S dzdt in (z, t) space, measured with20

z-coordinates and density-coordinates, respectively.
Because the no-normal-flow condition of the Eulerian mean velocity U is obvious, it
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is essential to show how the remaining part Û−U (=U+, called the quasi-Stokes veloc-
ity in McDougall and McIntosh, 1996, 2001) satisfies the boundary condition (Table 1).
The pile-up rule, Eq. (3), makes the horizontal component of the quasi-Stokes veloc-
ity purely baroclinic:

∫0
−h V

+dz (=
∫0
−h V̂ −V dz)=0. This allows the overturning stream

function
∫z
−h V

+dz (=
∫z
−h V̂ −V dz) to vanish at the top and bottom boundaries, which5

confirms the no-normal-flow boundary condition of U+. As a result, the total trans-
port velocity Û has no component normal to the top and bottom boundaries, in sharp
contrast to the total transport velocity in the TEM theory.

Explaining the boundary condition becomes less straightforward when the pile-up
rule is not used (Bleck, 1985; Jacobson and Aiki, 2006). The pile-up rule turns out to10

be useful also for the derivation of energy equations (Sect. 3).

3 Energy equations

Both the potential and kinetic energies are subject to temporal low-pass filtering, re-
sulting in the so-called total potential and total kinetic energies, respectively, whose
equations for inviscid hydrostatic Boussinesq fluids are15

∂
∂t

ρgz + ∇ · (Uρgz) = gwρ, (4)

∂
∂t

(
ρ0

2
|V |2

)
+ ∇ ·

(
U
ρ0

2
|V |2

)
= V ·G, (5)

where the overbar denotes the Eulerian temporal mean at a constant height. The
energy interaction is determined by the pressure-flux divergence:

− ∇ ·
(
U

∫
z
ρgdz

)
= V ·G + gwρ, (6)

20
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which includes the incompressibility condition ∇·U=0. To simplify the problem, we
consider a volume integral in a closed domain Ω with solid boundaries (i.e., rigid sea
surface). Because the raw velocity U has no component crossing the boundaries of
the domain, the volume integral of Eqs. (4–6) becomes

d
dt

∫
Ω
ρgz d3x = g

∫
Ω
wρ d3x, (7)

5

ρ0

2
d
dt

∫
Ω
|V |2 d3x =

∫
Ω
V ·G d3x, (8)

0 =
∫
Ω
V ·G d3x +

∫
Ω
gwρ d3x. (9)

In the absence of boundary forcing and friction, the sum of the total potential and total
kinetic energies is constant.

3.1 Mean field10

The component of the total energy that is written in terms of resolved quantities, such
as ρ̃ and V̂ , is traditionally called the mean energy (a clearer term is the resolved
mean energy). The mean potential and mean kinetic energies and their interaction are
described by Eqs. (1), (2), and the incompressibility condition ∇·Û=0:

∂
∂t

(ρ̃gz) + ∇ ·
(
Ûρ̃gz

)
= gŵρ̃. (10)15

∂
∂t

(
ρ0

2
|V̂ |2

)
+ ∇ ·

(
Û
ρ0

2
|V̂ |2

)
= V̂ · (G̃ +GB) + ρ0V̂ ·M[V ], (11)

− ∇ ·
(
Û

∫
z
ρ̃gdz

)
= V̂ · G̃ + gŵρ̃. (12)
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The mean kinetic energy in Eq. (11) is defined in terms of the thickness-weighted
mean velocity, as in Bleck (1985) and Jacobson and Aiki (2006). The quantity |V̂ | is
the magnitude of (the horizontal component of) the total advective velocity including
the basic geostrophic current and the eddy-induced overturning transport (detailed in
Sect. 3.3). We emphasize that here the mean kinetic energy is defined with neither the5

Eulerian mean velocity V nor the isopycnal mean velocity Ṽ . By remembering that the
total transport velocity Û has no component crossing the boundaries (Sect. 2.2), the
volume integral of Eqs. (10–12) becomes

d
dt

∫
Ω
ρ̃gz d3x = g

∫
Ω
ŵρ̃ d3x, (13)

10

ρ0

2
d
dt

∫
Ω
|V̂ |2 d3x =

∫
Ω
V̂ · G̃ d3x +

∫
Ω

(
V̂ ·GB + ρ0V̂ ·M[V ]

)
d3x, (14)

0 =
∫
Ω
V̂ · G̃ d3x +

∫
Ω
gŵρ̃ d3x. (15)

The second integral on the right-hand side of Eq. (14) allows transfer of energy between
the mean and eddy fields. Both the Reynolds stress M[V ] and the layer-thickness form
drag G

B are responsible for the connection between the mean and eddy fields.15

3.2 Eddy field

The remaining component of the total energy is traditionally called the eddy energy (a
clearer term is the unresolved perturbation energy). Below we derive the eddy energy
as the difference between (the residual of) the total and mean energies.

An equation for the eddy potential energy is obtained by subtracting Eq. (10) from20

Eq. (4), which essentially is the difference between the MH density and the Eulerian
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mean density. The volume budget of the eddy potential energy is obtained by subtract-
ing Eq. (13) from Eq. (7):

d
dt

∫
Ω

(ρ − ρ̃)gz d3x = g
∫
Ω

(ρw − ρ̃ŵ) d3x. (16)

It is expected that the energy level associated with ρgz is higher than that of ρ̃gz be-
cause the Eulerian mean density ρ is smoothed in the vertical direction (as suggested5

by Fig. 1). McDougall and McIntosh (2001) showed that the difference between the

Eulerian mean density and the MH density is ρ−ρ̃=
(
φ/ρz

)
z +O(α3), where φ≡1

2ρ
′2 is

half the density variance measured at a fixed point in space and α is a scale for den-
sity disturbances. Integration by parts yields

∫0
−h

(
φ/ρz

)
z gz dz=−

∫0
−hφg/ρz dz>0,

which is the eddy potential energy referred to in some previous studies. Canuto and10

Dubovikov (2006), in reviewing the classical energetics of Böning and Budich (1992)
and thus Lorenz (1955), presented the same definition of the eddy potential energy.
However, if the eddy potential energy is expressed with φ, it involves small errors as-
sociated with the Taylor expansion and the top and bottom boundary conditions. The
present study uses the exact form of the eddy potential energy, Eq. (16).15

An equation for the eddy kinetic energy is obtained by subtracting Eq. (11) from
Eq. (5), and the volume budget of the eddy kinetic energy is obtained by subtracting
Eq. (14) from Eq. (8). We use the pile-up rule, Eq. (3), to obtain a thickness-weighted
form of integral equation for the total kinetic energy, Eq. (8). Equation (8) becomes

ρ0

2
d
dt

∫
Ω

|V̂ |2 +
zρ|V ′′|2

ρ

zρ
ρ

 d3x =
∫
Ω

V̂ · Ĝ +
zρV ′′ ·G′′

ρ

zρ
ρ

 d3x, (17)
20

where V
′′=V −zρV

ρ
/zρ

ρ
and G

′′=G−zρG
ρ
/zρ

ρ
are the deviations from the thickness-

weighted mean, in density-coordinates (see Table 1). Subtracting Eq. (14) from
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Eq. (17) yields the equation for the eddy kinetic energy:

ρ0

2
d
dt

∫
Ω
|V ′′|2 d3x =

∫
Ω
V ′′ ·G′′ d3x − ρ0

∫
V̂ ·M[V ] d3x, (18)

where we used the pile-up rule, Eq. (3), again for the primed products. The left-hand
side of Eq. (18) shows that the eddy kinetic energy is a positive-definite quantity.

An equation for the pressure-flux divergence in the eddy field is obtained by sub-5

tracting Eq. (12) from Eq. (6), and the volume budget of the pressure-flux divergence
in the eddy field is obtained by subtracting Eq. (15) from Eq. (9). We use the pile-up
rule, Eq. (3), to obtain a thickness-weighted form of integral Eq. (9), for the energy
interaction in the total field. Equation (9) becomes

0 =
∫
Ω
V ·G d3x +

∫
Ω
gwρ d3x

10

=
∫
Ω

(
V̂ · Ĝ + V ′′ ·G′′

)
d3x +

∫
Ω
gwρ d3x, (19)

where we have used the pile-up rule, Eq. (3), to transform V ·G. Subtracting Eq. (15)
from Eq. (19) yields

0 =
∫
Ω

(
V̂ ·GB + V ′′ ·G′′

)
d3x +

∫
Ω
g(wρ − ŵρ̃) d3x. (20)

Equations (15) and (20) are used in Sect. 3.4 to close the four-box energy diagram15

(Fig. 2).
At this point we have a complete set of equations for the mean and eddy energies.

3.3 Eddy transports

Before examining the energy diagram, we briefly discuss a separation of the to-
tal advective velocity into Û≡Ũ+UB (Table 1). The isopycnal mean velocity Ũ20

is usually almost in geostrophic balance, and the secondary velocity U
B is an
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eddy-induced overturning circulation that is often called the bolus velocity (Rhines,
1982). The horizontal component of the bolus velocity was originally defined as

V
B≡((∂z/∂ρ)V ′′′)

ρ
/(∂z/∂ρ)

ρ
in layered models, where V

′′′≡V −V
ρ

is the deviation
in density-coordinates from the isopycnal mean (see Table 1). Using the nondiver-
gence of Û, the vertical component of the bolus velocity in z-coordinates is given by5

wB=−w̃−∇H ·
∫z
−h V̂ dz. Note that both the bolus velocity and the isopycnal mean ve-

locity are three-dimensionally divergent.
By noting V

′′≡V ′′′−V B in density-coordinates, the eddy kinetic energy in Eq. (18)
can be rewritten using∫ 0

−h
|V ′′|2 dz =

∫ 0

−h

zρ|V ′′|2
ρ

zρ
ρ dz

10

=
∫ 0

−h

zρ(|V ′′′|2 − 2V ′′′ · V B + |V B |2)
ρ

zρ
ρ dz

=
∫ 0

−h

zρ|V ′′′|2
ρ

zρ
ρ − 2

zρV ′′′
ρ
· V B

zρ
ρ + |V B|2 dz

=
∫ 0

−h
|V ′′′|2 − 2|V B|2 + |V B|2 dz

=
∫ 0

−h
|V ′′′|2 − |V B |2 dz, (21)

where the pile-up rule, Eq. (3), has been applied. Interestingly, Eq. (21) shows that the15

eddy kinetic energy is a conventional disturbance energy (ρ0/2)|V ′′′|2 (based on the
deviation from the isopycnal mean) minus the eddy transport component (ρ0/2)|V B|2.
It should be noted that velocity V

B of the eddy-induced overturning has been included
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in the mean kinetic energy, (ρ0/2)|V̂ |2, in the present definition.

3.4 Energy cycle

An energy diagram for Eqs. (13), (14), (16), and (18) is illustrated in Fig. 2. In order to
elucidate the form of the energy cycle, equations for the energy interaction, Eqs. (15)
and (20), are here made independent of the budget of the potential and kinetic ener-5

gies.
We are primarily concerned with the case of baroclinic instability (Charney, 1947;

Eady, 1949), which is a cascade that originates in the mean potential energy in the
absence of mechanical forcing at the boundaries. The eddy-induced overturning is
essential to relax the slope of density surfaces, which leads to the extraction of the10

mean potential energy as expressed by V
B·G̃ in Fig. 2. This channel is found to be

in the resolved mean field, and it provides an input to the mean kinetic energy (i.e.,
acceleration of the mean current), in contrast to the classical Lorenz energy diagram
(Lorenz, 1955; Böning and Budish, 1992). It is also noted in Fig. 2 that the mean
kinetic energy (ρ0/2)|V̂ |2 will leak to the unresolved perturbation field by V̂ ·GB: this is15

the redistribution of momentum by the form drag.
In the unresolved field in Fig. 2, the quantity V̂ ·GB is independently connected to both

the eddy potential and kinetic energies; this is due to Eq. (20). In particular, the direct
connection between the eddy potential and the mean kinetic energies involves both
the density surface perturbation and the layer-thickness form drag. The situation in20

the unresolved perturbation field is consistent with the result of Iwasaki (2001) derived
from the mass-weighted-mean equations for non-Boussinesq fluids. The backmapping
method of de Szoeke and Bennett (1993) based on the mean height of each isopycnal
surface is consistent with the theory of Iwasaki (2001) based on the mean pressure
along each isentropic surface (cf. Kushner and Held, 1999; Greatbatch and McDougall,25

2003).
In addition to the form drag, the Reynolds stress M[V ] also connects the mean and
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eddy kinetic energies, which is relevant to the role of relative vorticity in baroclinic
instability.

3.5 Comparison with the TEM and Lorenz formulations

The present diagram (and that of Iwasaki) may be considered to be partly analogous
to the TEM energy diagram (Plumb, 1983; Kanzawa, 1984), in that the fraction of the5

mean potential energy extracted by the eddy-induced overturning is able to interact
with the mean kinetic energy before cascading to the unresolved field. The TEM en-
ergy diagram differs from that of Lorenz (1955) not because of a different definition
of the mean and perturbation fields but because the TEM energy equations assume
geostrophy in some terms in the primitive equations. The major difference between the10

present formulation (Bleck, 1985; Iwasaki, 2001; Jacobson and Aiki, 2006) and those
of both Lorenz and the TEM theory comes from the modified definition for the mean
and eddy kinetic energies, including the momentum equation being written for the to-
tal transport velocity and the modified pressure term incorporating the layer-thickness
form drag. On the other hand, the definition of the mean and eddy potential energies15

given in this paper is similar to those in the classical Lorenz diagram and in the TEM
diagram except for the direction of averaging.

Another concern is the boundary condition. The application of the TEM energy cycle
to the Eady problem described in Sect. 5a of Plumb (1983) is complicated by the non-
physical energy fluxes through the top and bottom boundaries: the domain integrated20

fluxes divergences, such as ∇·F ∗(KM ) and ∇·F ∗(KE ), are nonzero. These energy fluxes
in Plumb (1983) correspond to the pressure fluxes in the present study: we show that
the volume integral of the pressure flux divergence clearly vanishes in the mean field,
Eq. (15), and in the eddy field, Eq. (20).

To summarize, the adiabatic mean formulation presented here provides several25

unique features: (i) the total transport velocity Û has no component normal to solid
boundaries (Sect. 2.2), (ii) velocity V

B of the eddy-induced overturning circulation is
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included in the mean kinetic energy (ρ0/2)|V̂ |2, (iii) geostrophic balance is not used
in closing the energy diagram, and (iv) the presence of density surface perturbations
(i.e., eddy potential energy) is directly related to the form drag working on the basic
geostrophic currents: this replaces the route via the eddy kinetic energy in the TEM
theory.5

3.6 Assumptions

Additional results may be obtained if further assumptions are made. For example, if the
basic current is largely geostrophic (ρ0fz×Ṽ 'G̃) and the form drag is approximated as
G

B'ρ0fz×V
B in middle and high latitudes as is often done (Rhines, 1979; Greatbatch,

1998), the input from the potential energy balances the output to the unresolved field10

(this is indicated by the triple line in Fig. 2):

V̂ ·GB ' (Ṽ + V B) · (ρ0fz × V B)

= Ṽ · (ρ0fz × V B)

= −V B · (ρ0fz × Ṽ )

' −V B · G̃. (22)15

A small exchange due to the barotropic component of the form drag will be ignored
if we consider a form drag G

B that causes no net force in each vertical column (i.e.,
redistributing momentum only in the vertical direction). Equation (22) implies that no
energy accumulates in the mean kinetic energy, which in turn indicates that the layer-
thickness form drag approach in OGCMs produces results similar to those given by the20

extra advection schemes (discussed in Sect. 4 of Gent et al., 1995).
Nevertheless, the use of Eqs. (1) and (2) in OGCMs may result in barotropic currents

and interactions with the bottom topography that differ somewhat from those in the extra
advection schemes, since the upper-layer momentum is gradually transferred down to
the bottom by the form drag parameterization. Aiki et al. (2004) has demonstrated that25

556

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/3/541/2006/osd-3-541-2006-print.pdf
http://www.ocean-sci-discuss.net/3/541/2006/osd-3-541-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


OSD
3, 541–568, 2006

Eddy form drag

H. Aiki and T. Yamagata

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

relaxing the thermal wind balance of the basic field allows for barotropic currents to be
present (see their Fig. 3). In the present energy cycle (Fig. 2), the fraction of the mean
potential energy that is extracted by the eddy-induced overturning is able to interact
with the mean kinetic energy before cascading to the unresolved field, in contrast to
the extra advection schemes (based on the Lorenz diagram) that remove the mean5

potential energy directly.

4 Work of the layer-thickness form drag

It is of great interest to quantify the work of layer-thickness form drag in the world’s
oceans. Below we derive an indirect estimate of the energy conversion rate; realistic
analyses of field measurements and numerical simulations are devoted to a later study.10

4.1 Scaling

Greatbatch (1998) suggested that the layer-thickness form drag could be parameter-
ized by transferring the geostrophic momentum in the vertical direction (cf. Ferreira et
al., 2005). Aiki et al. (2004) considered a similar form drag, which damped out the
baroclinic component of the isopycnal mean velocity Ṽ bc:15

GB/ρ0 = −C′|f |Ṽ bc, (23)

where C′ (>0) is a nondimensional constant. A series of preliminary numerical ex-
periments were reported in Aiki et al. (2004), in which an arbitrary setting of C′=0.3
was used with little justification for the rate of the overturning circulation. An appro-
priate value of C′ that gives a realistic overturning circulation in the world’s oceans is20

examined below.
Here we compute the form drag, G

B, starting with existing information about
the eddy-induced velocity V

B. Equation (23) with the form-drag approximation
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G
B'ρ0fz×V

B (Sect. 3.6) yields the following eddy-induced extra velocity:

V B ' C′ f
|f |
z × Ṽ bc. (24)

The basic current of the velocity, Ṽ bc, is assumed to be in thermal wind balance with the
climatological density field of the World Ocean Atlas 2001 (Conkright et al., 2002), at
least away from the equator. As plotted in Fig. 3 for the meridional overturning stream5

function, there are four distinct cells: (i) in the Southern Ocean associated with the
instability of the Antarctic Circumpolar Current, (ii, iii) in the equatorial flanks that tend
to lower the upwelling thermocline, and (iv) in the northern mid-latitudes corresponding
to overturning cells of the Gulf Stream and the Kuroshio. We set C′=0.02 so that the
overturning rate in the Southern Ocean, which is 16×106 m3/s in Fig. 3, becomes as10

high as that in Figs. 6 and 7 of Gent et al. (1995). Although the eddy-induced circulation
shown in Fig. 3 looks more intense between 30◦ S and 30◦ N (which will weaken the
equatorial upwelling), the setting of C′=0.02 for the simplified form drag in Eq. (23)
can be regarded as corresponding to the standard horizontal diffusivity κ=1000 m2/s
in the parameterization of Gent and McWilliams (1990). If the magnitude of the bolus15

velocity is roughly 2% of the isopycnal mean velocity from Eq. (24) in the global ocean,
estimates of the mean kinetic energy based on the thickness-weighted mean velocity
and based on the unweighted mean velocity will yield very similar values, regardless of
the physical meaning of the modified definitions of the mean and eddy kinetic energies
(Sects. 3.1 and 3.3).20

4.2 Global conversion rate

The quantity V̂ ·GB in Eq. (22) is the work done by the form drag: momentum redis-
tribution in the resolved mean field results in an energy cascade into the unresolved
perturbation field. The quantity −V B·G̃ is the depletion rate of the mean potential en-
ergy by the eddy-induced overturning. With the parameterization in Eqs. (23) and (24),25
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these terms become V̂ ·GB'−V B·G̃=−ρ0C
′|f ||Ṽ bc|

2, which is negative in each vertical
column. Figure 4 plots the column integral∫ 0

−h
ρ0C

′|f ||Ṽ bc|2 dz, (25)

for C′=0.02 and velocity Ṽ bc from the World Ocean Atlas (Sect. 4.1). Energy extraction
on the order of 10−2 W/m2 is suggested in the regions of the Antarctic Circumpolar5

Current, the Gulf Stream, and the Kuroshio, which are indeed regions of enhanced
eddy activity in the world’s ocean currents. The global integral amounts to 0.41 TW
(1 TW=1012 W). Similar estimates using the Gent and McWilliams parameterization
(Huang and Wang, 2003; Wunsh and Ferrari, 2004) give a range of 0.2–1.7 TW (which
is reported to be very sensitive to the implementation technique). These values are10

comparable with the work done by the wind stress, which has been estimated at about
0.8 TW (Wunsh, 1998). A global data assimilation for the layer-thickness form drag, GB,
in Eq. (2) by Ferreira et al. (2005) has confirmed that the work associated with the eddy
stress in the ocean interior is close to that of the wind stress applied at the sea surface.
The wind-induced Ekman transports can increase the mean potential energy through15

the energy channel Ṽ ·G̃ in Fig. 2, which makes the energy cycle of the (wind-driven)
ocean circulation different from that of the (heat-driven) atmosphere circulation.

5 Conclusions

To understand the anisotropic mixing of momentum in a stratified fluid, we have investi-
gated the residual effects of pressure perturbation (layer-thickness form drag) using the20

thickness-weighted temporal-averaged mean momentum and density equations (de
Szoeke and Bennett, 1993; McDougall and McIntosh, 2001; Jacobson and Aiki, 2006).
The layer-thickness form drag connects the mean and eddy fields in a four-box energy
diagram if the thickness-weighted mean velocity and the deviation from it are used
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for the definitions of the mean and eddy kinetic energies, respectively (Sects. 3.1 and
3.2). The adiabatic energy diagram in Sect. 3.4 should be consistent with the energy
diagrams of layer models, TRM theory, and Iwasaki’s atmospheric theory. The energy
equations are obtained using an integral identity (called the “pile-up rule”) between cu-
mulative sums of the Eulerian mean quantity and the thickness-weighted mean quantity5

in each vertical column (Sect. 2.2). The pile-up rule shows that the thickness-weighted
mean velocity satisfies a no-normal-flow boundary condition at the top and bottom of
the ocean, which enables the volume budget of the pressure-flux divergence to be de-
termined in the energy diagram (Sect. 3.5). The pile-up rule has also made it possible
to rewrite the total kinetic energy based on the Eulerian mean, Eq. (8), in a thickness-10

weighted form, Eq. (17). Necessary conditions for the derivation of the adiabatic energy
diagram are summarized as follows:

(i) The total transport velocity has no component across the top and bottom bound-
aries (which represents an appropriate boundary condition for the pressure flux
in the mean field).15

(ii) The mean and eddy kinetic energies are defined using the total transport velocity
and the deviation from it, respectively.

(iii) The momentum and density equations in the mean field are written for the total
transport velocity and the mean height of density surfaces.

McDougall and McIntosh (2001) have contributed to prove condition (i), Bleck (1985)20

and Jacobson and Aiki (2006) have demonstrated conditions (ii) and (iii), and Iwasaki
(2001) has explained all of the above three conditions. Regardless of the physical
meaning of (ii), the scale analysis in the global ocean suggests that estimates of the
mean kinetic energy based on the thickness-weighted mean velocity and based on
the unweighted mean velocity will yield very similar values (Sect. 4.1). Under certain25

assumptions, the work of layer-thickness form drag in the global ocean circulation is
suggested to be comparable to the work done by the wind forcing (Sect. 4.2). Direct
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analyses of high-resolution data in the Southern Ocean will serve to understand the
relationship between the works done by the wind stress and the layer-thickness form
drag (cf. Rintoul et al., 2001).

An application of the layer-thickness form drag is the parameterization of geostrophic
eddies in the coarse-resolution ocean models used in climate studies (Greatbatch,5

1998). The use of the thickness-weighted mean momentum Eq. (2) in OGCMs may
result in barotropic currents and interactions with the bottom topography that differ
somewhat from those in the extra advection schemes, since the adiabatic energy cy-
cle enables the fraction of the mean potential energy to interact with the mean kinetic
energy before cascading to the unresolved field (Sect. 3.6). Further studies should10

investigate the role of layer-thickness form drag in the ocean and atmosphere circula-
tions.

Acknowledgements. The authors thank T. Iwasaki and T. Jacobson for useful discussions.

References

Aiki, H., Jacobson, T., and Yamagata, T.: Parameterizing ocean eddy transports from surface15

to bottom, Geophys. Res. Lett., 31, L19 302, doi:10.1029/2004GL020703, 2004.
Andrews, R. G. and McIntyre, M. E.: Planetary waves in horizontal and vertical shear: the

generalized Eliassen-Palm relation and the mean zonal acceleration, J. Atmos. Sci., 33,
2031–2053, 1976.

Andrews, R. G. and McIntyre, M. E.: An exact theory of nonlinear waves on a Lagrangian-mean20

flow, J. Fluid Mech., 89, 609–646, 1978.
Bleck, R.: On the conversion between mean and eddy components of potential and kinetic

energy in isentropic and isopycnic coordinates, Dyn. Atmos. Oceans, 9, 17–37, 1985.
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Table 1. List of symbols, where S(x, y, ρ, t) is an arbitrary quantity.

S Eulerian mean at fixed height

zρS
ρ
/zρ

ρ
thickness weighted mean in density-coordinates (zρ≡ ∂z

∂ρ is the thickness)

Ŝ
same as the above except for being mapped back onto z-coordinates
with the mean vertical height of each isopycnal surface as the reference

S
ρ

isopycnal mean in density-coordinates

S̃
same as the above except for being mapped back onto z-coordinates
with the mean vertical height of each isopycnal surface as the reference

S ′ deviation from the Eulerian mean: S ′≡S−S
(compared in z-coordinates at fixed height, S ′≡0)

S ′′ deviation from the thickness-weighted mean: S ′′≡S−zρS
ρ
/zρ

ρ

(compared in density-coordinates at fixed density, zρS ′′
ρ
≡0)

S ′′′ deviation from the isopycnal mean: S ′′′≡S−S
ρ

(compared in density-coordinates at fixed density, S ′′′
ρ
≡0)

∇ three-dimensional gradient in z-coordinates

∇H horizontal gradient in z-coordinates

U three-dimensional velocity

V horizontal component of U (two dimensional)

Ṽ bc baroclinic component of the isopycnal mean velocity Ṽ

ρ potential density

ρ̃ mean height (MH) density

G horizontal down-gradient of the hydrostatic pressure: −∇H

∫
z gρdz

G̃ same as above except for being composed of the MH density: −∇H

∫
z gρ̃dz

G
B layer-thickness form drag: Ĝ−G̃ (originally G

B≡zρG′′′
ρ
/zρ

ρ
)

U
+ eddy-induced extra transport velocity: Û−U (called the quasi-Stokes velocity)

V
+ horizontal component of U+

U
B eddy-induced extra transport velocity: Û−Ũ (called the bolus velocity)

V
B horizontal component of UB (originally V

B≡zρV ′′′
ρ
/zρ

ρ
)

M[] isopycnal mixing (the special case of M[V ] is the Reynolds stress)
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(a) raw density (b) Eulerian mean density

t

z z

t

(c) mean height density

t

z

Fig. 1. Views of (a) the raw density ρ(z, t), showing the vertical fluctuation of a density surface
in a two-density fluid; (b) the Eulerian mean density ρ(z, t), which is given by the fixed-height
temporal average; and (c) the mean height density ρ̃(z, t), which is a z-coordinate expression
of the adiabatically low-pass filtered layer interface. A darker shade indicates higher density.
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resolved mean field
(general circulation)

unresolved perturbation field
(transient eddies)

mean potential energy
ρ̃gz

mean kinetic energy

(ρ0/2)|V̂ |2

eddy potential energy
(ρ − ρ̃)gz

eddy kinetic energy

(ρ0/2)|V ′′|2
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�
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V̂ · GB

ρ0V̂ ·
M [V ]

−ρ0V̂ ·
M [V ]

Fig. 2. The energy diagram for the thickness-weighted-mean formulation of an adiabatic
hydrostatic Boussinesq fluid. Energy budgets are evaluated after taking the volume integral in
a closed domain Ω based on Eqs. (13–16), (18), and (20). Details are in Sect. 3.4.
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8 Aiki and Yamagata: Eddy Form Drag

Fig. 3. Zonal integral of the meridional overturning stream function
Ψy = −

R z

−h
vBdz (with units of106 m3/s) in the global ocean,

for the parameterized velocity in Eq. (24) withC′ = 0.02. The
baroclinic velocityṼbc of the basic geostrophic current was cal-
culated from the World Ocean Atlas. The solid (dashed) contours
denote positive (negative) values.

4 Work of the layer-thickness form drag

It is of great interest to quantify the work of layer-thickness
form drag in the world’s oceans. Below we derive an indirect
estimate of the energy conversion rate; realistic analyses of
field measurements and numerical simulations are devoted to
a later study.

4.1 Scaling

Greatbatch (1998) suggested that the layer-thickness form
drag could be parameterized by transferring the geostrophic
momentum in the vertical direction (cf. Ferreiraet al., 2005).
Aiki et al. (2004) considered a similar form drag, which
damped out the baroclinic component of the isopycnal mean
velocity Ṽbc:

GB/ρ0 = −C ′|f |Ṽbc, (23)

whereC ′ (> 0) is a nondimensional constant. A series of
preliminary numerical experiments were reported in Aikiet
al. (2004), in which an arbitrary setting ofC ′ = 0.3 was
used with little justification for the rate of the overturning
circulation. An appropriate value ofC ′ that gives a realis-
tic overturning circulation in the world’s oceans is examined
below.

Here we compute the form dragGB starting with existing
information about the eddy-induced velocityVB . Equation
(23) with the form drag approximationGB ' ρ0fz × VB

(Sect. 3.6) yields the following eddy-induced extra velocity:

VB ' C ′ f

|f |
z× Ṽbc. (24)

The basic current of the velocity,̃Vbc, is assumed to be in
thermal wind balance with the climatological density field

Fig. 4. A column integrated energy conversion rate
ρ0C

′|f |
R 0

−h
|Ṽbc|2dz [W/ m2] in the world’s oceans for the

pressure drag in Eq. (23) withC′ = 0.02. The baroclinic velocity
Ṽbc of the basic current is calculated from the World Ocean Atlas.

of the World Ocean Atlas 2001 (Conkrightet al., 2002), at
least away from the equator. As plotted in Fig. 3 for the
meridional overturning stream function, there are four dis-
tinct cells: (i) in the Southern Ocean associated with the in-
stability of the Antarctic Circumpolar Current, (ii, iii) in the
equatorial flanks that tend to lower the upwelling thermo-
cline, and (iv) in the northern mid-latitudes corresponding to
overturning cells of the Gulf Stream and the Kuroshio. We
setC ′ = 0.02 so that the overturning rate in the Southern
Ocean, which is16 × 106 m3/s in Fig. 3, becomes as high
as that in Figs. 6 and 7 of Gentet al. (1995). Although the
eddy-induced circulation shown in Fig. 3 looks more intense
between 30◦ S and 30◦ N (which will weaken the equatorial
upwelling), the setting ofC ′ = 0.02 for the simplified form
drag in Eq. (23) can be regarded as corresponding to the stan-
dard horizontal diffusivityκ = 1000 m2/s in the parameter-
ization of Gent and McWilliams (1990). If the magnitude of
the bolus velocity is roughly 2% of the isopycnal mean veloc-
ity from Eq. (24) in the global ocean, estimates of the mean
kinetic energy based on the thickness-weighted mean veloc-
ity and based on the unweighted mean velocity will yield
very similar values, regardless of the physical meaning of
the modified definition of the mean and eddy kinetic ener-
gies (Sects. 3.1 and 3.3).

4.2 Global conversion rate

The quantityV̂ ·GB in Eq. (22) is the work done by the form
drag: momentum redistribution in the resolved mean field
results in an energy cascade into the unresolved perturbation
field. The quantity−VB ·G̃ is the depletion rate of the mean
potential energy by the eddy-induced overturning. With the
parameterization in Eqs. (23) and (24), these terms become
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Fig. 3. Zonal integral of the meridional overturning stream function Ψy=−
∫z
−h v

Bdz (with units

of 106 m3/s) in the global ocean, for the parameterized velocity in Eq. (24) with C′=0.02. The
baroclinic velocity Ṽ bc of the basic geostrophic current was calculated from the World Ocean
Atlas. The solid (dashed) contours denote positive (negative) values.
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Fig. 3. Zonal integral of the meridional overturning stream function
Ψy = −

R z

−h
vBdz (with units of106 m3/s) in the global ocean,

for the parameterized velocity in Eq. (24) withC′ = 0.02. The
baroclinic velocityṼbc of the basic geostrophic current was cal-
culated from the World Ocean Atlas. The solid (dashed) contours
denote positive (negative) values.

4 Work of the layer-thickness form drag

It is of great interest to quantify the work of layer-thickness
form drag in the world’s oceans. Below we derive an indirect
estimate of the energy conversion rate; realistic analyses of
field measurements and numerical simulations are devoted to
a later study.

4.1 Scaling

Greatbatch (1998) suggested that the layer-thickness form
drag could be parameterized by transferring the geostrophic
momentum in the vertical direction (cf. Ferreiraet al., 2005).
Aiki et al. (2004) considered a similar form drag, which
damped out the baroclinic component of the isopycnal mean
velocity Ṽbc:

GB/ρ0 = −C ′|f |Ṽbc, (23)

whereC ′ (> 0) is a nondimensional constant. A series of
preliminary numerical experiments were reported in Aikiet
al. (2004), in which an arbitrary setting ofC ′ = 0.3 was
used with little justification for the rate of the overturning
circulation. An appropriate value ofC ′ that gives a realis-
tic overturning circulation in the world’s oceans is examined
below.

Here we compute the form dragGB starting with existing
information about the eddy-induced velocityVB . Equation
(23) with the form drag approximationGB ' ρ0fz × VB

(Sect. 3.6) yields the following eddy-induced extra velocity:

VB ' C ′ f

|f |
z× Ṽbc. (24)

The basic current of the velocity,̃Vbc, is assumed to be in
thermal wind balance with the climatological density field

Fig. 4. A column integrated energy conversion rate
ρ0C

′|f |
R 0

−h
|Ṽbc|2dz [W/ m2] in the world’s oceans for the

pressure drag in Eq. (23) withC′ = 0.02. The baroclinic velocity
Ṽbc of the basic current is calculated from the World Ocean Atlas.

of the World Ocean Atlas 2001 (Conkrightet al., 2002), at
least away from the equator. As plotted in Fig. 3 for the
meridional overturning stream function, there are four dis-
tinct cells: (i) in the Southern Ocean associated with the in-
stability of the Antarctic Circumpolar Current, (ii, iii) in the
equatorial flanks that tend to lower the upwelling thermo-
cline, and (iv) in the northern mid-latitudes corresponding to
overturning cells of the Gulf Stream and the Kuroshio. We
setC ′ = 0.02 so that the overturning rate in the Southern
Ocean, which is16 × 106 m3/s in Fig. 3, becomes as high
as that in Figs. 6 and 7 of Gentet al. (1995). Although the
eddy-induced circulation shown in Fig. 3 looks more intense
between 30◦ S and 30◦ N (which will weaken the equatorial
upwelling), the setting ofC ′ = 0.02 for the simplified form
drag in Eq. (23) can be regarded as corresponding to the stan-
dard horizontal diffusivityκ = 1000 m2/s in the parameter-
ization of Gent and McWilliams (1990). If the magnitude of
the bolus velocity is roughly 2% of the isopycnal mean veloc-
ity from Eq. (24) in the global ocean, estimates of the mean
kinetic energy based on the thickness-weighted mean veloc-
ity and based on the unweighted mean velocity will yield
very similar values, regardless of the physical meaning of
the modified definition of the mean and eddy kinetic ener-
gies (Sects. 3.1 and 3.3).

4.2 Global conversion rate

The quantityV̂ ·GB in Eq. (22) is the work done by the form
drag: momentum redistribution in the resolved mean field
results in an energy cascade into the unresolved perturbation
field. The quantity−VB ·G̃ is the depletion rate of the mean
potential energy by the eddy-induced overturning. With the
parameterization in Eqs. (23) and (24), these terms become
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Fig. 4. A column integrated energy conversion rate ρ0C
′|f |

∫0
−h |Ṽ bc|

2dz [W/m2] in the world’s

oceans for the pressure drag in Eq. (23) with C′=0.02. The baroclinic velocity Ṽ bc of the basic
current was calculated from the World Ocean Atlas.
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